Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
preprints.org; 2023.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202307.0363.v1

ABSTRACT

SARS-CoV-2 pandemic caused an increase in Intensive Care Unit (ICU) hospitalizations with rise in morbidity and mortality; nevertheless, there is still little evidence of pandemic impact on antibiotic resistance in ICU. Retrospective monocentric epidemiological study. All microorganisms isolated from all patients admitted to E.O. Galliera ICU from January 2018 to December 2022 were included. Antibiotic resistance (AR) profiles were evaluated. Aim of the study was to describe and analyze the impact of SARS-CoV-2 pandemic on ICU microorganisms resistance patterns. 1,771 microorganisms identified, 221 (12.47%) had resistant pattern (Resistant Organisms; ROs) isolated from 1,679 patients during 12,030 hospitalization days. The majority of ROs were Gram-negative (79.66% 2018, 77.29% 2019, 61.83% 2020, 62.56% 2021, 60.75% 2022), but increase of Gram-positive microorganisms was observed (20.34% to 39.25% between 2018-2022). Prevalence of AR was: 19.44% 2018, 11.54% 2019, 38.04% 2020, 34.15% 2021, 39.29% 2022 for Gram-positives; 19.86%, 13.56%, 18.12%, 12.41%, 12.31% for Gram-negatives. Incidence of Ros showed COVID-related rise in 2020-2021, followed by a lowering trend since 2021, with new rise in 2022. Possible explanations are antibiotic overtreatment and drop of containing measures. Interesting finding is the cumulative lowering trend of carbapenem resistant K. pneumoniae and P. aeruginosa probably due to different patient features.

2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.08.22280836

ABSTRACT

Background. SARS-CoV-2 ongoing pandemic and heterologous immunization approaches implemented worldwide for booster doses call for diversified vaccines portfolio. We report safety and immunogenicity of GRAd-COV2, a novel gorilla adenovirus-based COVID-19 vaccine, in a phase 2 trial aimed at identifying the appropriate dose and schedule. Method. 917 eligible adults aged 18 years or older, including participants with co-morbidities, were randomised to receive, 21 days apart, a single vaccine administration at 2x1011 viral particles (vp) followed by placebo, or repeated vaccine administration at 1x1011 vp, or two doses of placebo. Primary endpoints were the incidence of local and systemic solicited AEs for 7 days post each dose and the post-treatment (35 days after the first dose), geometric mean titers (GMTs) and geometric mean fold rise (GMFRs) of ELISA antibody responses to Spike protein. Additional humoral and cellular immune response parameters were monitored for up to six months. Results. The safety profile of GRAd-COV2 was characterized by short-term, mild-to-moderate pain and tenderness at injection site, fatigue, headache, malaise, and myalgia. Neither related SAEs nor deaths were reported. Humoral (binding and neutralizing) Ab responses peaked at day 35 after a single administration, were boosted by a second vaccination, were sustained until day 57 to then decline at day 180. Potent, VOC cross-reactive T cell responses peaked already after first dose with high frequencies of long-lived CD8 T cells. Conclusion. GRAd-COV2 was safe, and induced robust immune responses after a single immunization; the second administration increased humoral but not cellular immune responses.


Subject(s)
Pain , Headache , Myalgia , COVID-19 , Fatigue
3.
Frauke Degenhardt; David Ellinghaus; Simonas Juzenas; Jon Lerga-Jaso; Mareike Wendorff; Douglas Maya-Miles; Florian Uellendahl-Werth; Hesham ElAbd; Malte C. Ruehlemann; Jatin Arora; Onur oezer; Ole Bernt Lenning; Ronny Myhre; May Sissel Vadla; Eike Matthias Wacker; Lars Wienbrandt; Aaron Blandino Ortiz; Adolfo de Salazar; Adolfo Garrido Chercoles; Adriana Palom; Agustin Ruiz; Alberto Mantovani; Alberto Zanella; Aleksander Rygh Holten; Alena Mayer; Alessandra Bandera; Alessandro Cherubini; Alessandro Protti; Alessio Aghemo; Alessio Gerussi; Alexander Popov; Alfredo Ramirez; Alice Braun; Almut Nebel; Ana Barreira; Ana Lleo; Ana Teles; Anders Benjamin Kildal; Andrea Biondi; Andrea Ganna; Andrea Gori; Andreas Glueck; Andreas Lind; Anke Hinney; Anna Carreras Nolla; Anna Ludovica Fracanzani; Annalisa Cavallero; Anne Ma Dyrhol-Riise; Antonella Ruello; Antonio Julia; Antonio Muscatello; Antonio Pesenti; Antonio Voza; Ariadna Rando-Segura; Aurora Solier; Beatriz Cortes; Beatriz Mateos; Beatriz Nafria-Jimenez; Benedikt Schaefer; Bjoern Jensen; Carla Bellinghausen; Carlo Maj; Carlos Ferrando; Carmen de la Horrra; Carmen Quereda; Carsten Skurk; Charlotte Thibeault; Chiara Scollo; Christian Herr; Christoph D. Spinner; Christoph Lange; Cinzia Hu; Clara Lehmann; Claudio Cappadona; Clinton Azuure; - COVICAT study group; - Covid-19 Aachen Study (COVAS); Cristiana Bianco; Cristina Sancho; Dag Arne Lihaug Hoff; Daniela Galimberti; Daniele Prati; David Haschka; David Jimenez; David Pestana; David Toapanta; Elena Azzolini; Elio Scarpini; Elisa T. Helbig; Eloisa Urrechaga; Elvezia Maria Paraboschi; Emanuele Pontali; Enric Reverter; Enrique J. Calderon; Enrique Navas; Erik Solligard; Ernesto Contro; Eunate Arana; Federico Garcia; Felix Garcia Sanchez; Ferruccio Ceriotti; Filippo Martinelli-Boneschi; Flora Peyvandi; Florian Kurth; Francesco Blasi; Francesco Malvestiti; Francisco J. Medrano; Francisco Mesonero; Francisco Rodriguez-Frias; Frank Hanses; Fredrik Mueller; Giacomo Bellani; Giacomo Grasselli; Gianni Pezzoli; Giorgio Costantino; Giovanni Albano; Giuseppe Bellelli; Giuseppe Citerio; Giuseppe Foti; Giuseppe Lamorte; Holger Neb; Ilaria My; Ingo Kurth; Isabel Hernandez; Isabell Pink; Itziar de Rojas; Ivan Galvan-Femenia; Jan C. Holter; Jan Egil Egil Afset; Jan Heyckendorf; Jan Damas; Jan Kristian Rybniker; Janine Altmueller; Javier Ampuero; Jesus M. Banales; Joan Ramon Badia; Joaquin Dopazo; Jochen Schneider; Jonas Bergan; Jordi Barretina; Joern Walter; Jose Hernandez Quero; Josune Goikoetxea; Juan Delgado; Juan M. Guerrero; Julia Fazaal; Julia Kraft; Julia Schroeder; Kari Risnes; Karina Banasik; Karl Erik Mueller; Karoline I. Gaede; Koldo Garcia-Etxebarria; Kristian Tonby; Lars Heggelund; Laura Izquierdo-Sanchez; Laura Rachele Bettini; Lauro Sumoy; Leif Erik Sander; Lena J. Lippert; Leonardo Terranova; Lindokuhle Nkambule; Lisa Knopp; Lise Tuset Gustad; Lucia Garbarino; Luigi Santoro; Luis Tellez; Luisa Roade; Mahnoosh Ostadreza; Maider Intxausti; Manolis Kogevinas; Mar Riveiro-Barciela; Marc M. Berger; Mari E.K. Niemi; Maria A. Gutierrez-Stampa; Maria Grazia Valsecchi; Maria Hernandez-Tejero; Maria J.G.T. Vehreschild; Maria Manunta; Mariella D'Angio; Marina Cazzaniga; Marit M. Grimsrud; Markus Cornberg; Markus M. Noethen; Marta Marquie; Massimo Castoldi; Mattia Cordioli; Maurizio Cecconi; Mauro D'Amato; Max Augustin; Melissa Tomasi; Merce Boada; Michael Dreher; Michael J. Seilmaier; Michael Joannidis; Michael Wittig; Michela Mazzocco; Miguel Rodriguez-Gandia; Natale Imaz Ayo; Natalia Blay; Natalia Chueca; Nicola Montano; Nicole Ludwig; Nikolaus Marx; Nilda Martinez; - Norwegian SARS-CoV-2 Study group; Oliver A. Cornely; Oliver Witzke; Orazio Palmieri; - Pa COVID-19 Study Group; Paola Faverio; Paolo Bonfanti; Paolo Tentorio; Pedro Castro; Pedro M. Rodrigues; Pedro Pablo Espana; Per Hoffmann; Philip Rosenstiel; Philipp Schommers; Phillip Suwalski; Raul de Pablo; Ricard Ferrer; Robert Bals; Roberta Gualtierotti; Rocio Gallego-Duran; Rosa Nieto; Rossana Carpani; Ruben Morilla; Salvatore Badalamenti; Sammra Haider; Sandra Ciesek; Sandra May; Sara Bombace; Sara Marsal; Sara Pigazzini; Sebastian Klein; Selina Rolker; Serena Pelusi; Sibylle Wilfling; Silvano Bosari; Soren Brunak; Soumya Raychaudhuri; Stefan Schreiber; Stefanie Heilmann-Heimbach; Stefano Aliberti; Stephan Ripke; Susanne Dudman; - The Humanitas COVID-19 Task Forse; - The Humanitas Gavazzeni COVID-19 Task Force; Thomas Bahmer; Thomas Eggermann; Thomas Illig; Thorsten Brenner; Torsten Feldt; Trine Folseraas; Trinidad Gonzalez Cejudo; Ulf Landmesser; Ulrike Protzer; Ute Hehr; Valeria Rimoldi; Vegard Skogen; Verena Keitel; Verena Kopfnagel; Vicente Friaza; Victor Andrade; Victor Moreno; Wolfgang Poller; Xavier Farre; Xiaomin Wang; Yascha Khodamoradi; Zehra Karadeniz; Anna Latiano; Siegfried Goerg; Petra Bacher; Philipp Koehler; Florian Tran; Heinz Zoller; Eva C. Schulte; Bettina Heidecker; Kerstin U. Ludwig; Javier Fernandez; Manuel Romero-Gomez; Agustin Albillos; Pietro Invernizzi; Maria Buti; Stefano Duga; Luis Bujanda; Johannes R. Hov; Tobias L. Lenz; Rosanna Asselta; Rafael de Cid; Luca Valenti; Tom H. Karlsen; Mario Caceres; Andre Franke.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.21.21260624

ABSTRACT

Due to the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), deepening the host genetic contribution to severe COVID-19 may further improve our understanding about underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany, as well as hypothesis-driven targeted analysis of the human leukocyte antigen (HLA) region and chromosome Y haplotypes. We include detailed stratified analyses based on age, sex and disease severity. In addition to already established risk loci, our data identify and replicate two genome-wide significant loci at 17q21.31 and 19q13.33 associated with severe COVID-19 with respiratory failure. These associations implicate a highly pleiotropic ~0.9-Mb 17q21.31 inversion polymorphism, which affects lung function and immune and blood cell counts, and the NAPSA gene, involved in lung surfactant protein production, in COVID-19 pathogenesis.


Subject(s)
COVID-19 , Respiratory Insufficiency
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.13.21255411

ABSTRACT

BackgroundAnakinra may represent an important therapy to improve the prognosis of COVID-19 patients. This meta-analysis using individual patient data was designed to assess the efficacy and safety of anakinra treatment in patients with COVID-19. MethodsBased on a pre-specified protocol (PROSPERO: CRD42020221491), a systematic literature search was performed in MEDLINE (PubMed), Cochrane, medRxiv.org, bioRxiv.org and clinicaltrials.gov databases for trials in COVID-19 comparing administration of anakinra with standard-of-care and/or placebo. Individual patient data from eligible trials were requested. The primary endpoint was the mortality rate and the secondary endpoint was safety. FindingsLiterature search yielded 209 articles, of which 178 articles fulfilled screening criteria and were full-text assessed. Aggregate data on 1185 patients from 9 studies were analyzed and individual patient data on 895 patients from 6 studies were collected. Most studies used historical controls. Mortality was significantly lower in anakinra-treated patients (38/342 [11{middle dot}1%]) as compared with 137/553 (24{middle dot}8%) observed in patients receiving standard-of-care and/or placebo on top of standard-of-care (137/553 [24{middle dot}8%]); adjusted odds ratio (OR), 0{middle dot}32; 95% CI, 0{middle dot}20 to 0{middle dot}51; p <0{middle dot}001. The mortality benefit was similar across subgroups regardless of diabetes mellitus, ferritin concentrations, or baseline P/F ratio. The effect was more profound in patients exhibiting CRP levels >100 mg/L (OR 0{middle dot}28,95%CI 0{middle dot}27-1{middle dot}47). Safety issues, such as increase of secondary infections, did not emerge. InterpretationAnakinra may be a safe anti-inflammatory treatment option in patients hospitalized with moderate-to-severe COVID-19 pneumonia to reduce mortality, especially in the presence of hyperinflammation signs such as CRP>100mg /L. FundingSobi. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSSince the emergence of the COVID-19 pandemic, numerous drugs have been tried in an effort to prevent major detrimental consequences, such as respiratory and multiorgan failure and death. Early during the pandemic, it was realized that drugs aiming to regulate the immune host reaction may play an important role in the treatment of COVID-19. Evidence from a small number of patients with moderate or severe COVID-19 treated with anakinra, and interleukin-1 receptor antagonist, has suggested therapeutic efficacy. We systematically searched all available literature and aimed to present cumulative evidence of anakinra treatment in COVID-19 and the related effect on mortality. Added value of this studyThis is the first patient-level analysis on the effect of anakinra treatment in COVID-19 patients, which, on the one hand, suggests a significant benefit in the reduction of mortality and on the other hand, reassures safety of the treatment. Most importantly, the current study identifies a subgroup of patients with CRP>100mg/L, that may benefit most from treatment with anakinra. Confirmation of these effects in larger randomized clinical trials (RCTs) is urgently needed. Implications of all the available evidenceAnakinra may be an effective and safe immunomodulatory treatment in moderate-to-severe cases of pneumonia due to COVID-19 to prevent unfavorable outcomes. Anakinra may be helpful to avoid adverse events, such as breakthrough infections observed often with dexamethasone use, and may be considered an alternative in specific subgroups of patients e.g. diabetics. Larger trials, summarized in the Table, are ongoing and their results are urgently needed to investigate anakinras best place in the treatment of COVID-19. O_TBL View this table: org.highwire.dtl.DTLVardef@37134borg.highwire.dtl.DTLVardef@1d3ca11org.highwire.dtl.DTLVardef@1774b08org.highwire.dtl.DTLVardef@df281borg.highwire.dtl.DTLVardef@c2188d_HPS_FORMAT_FIGEXP M_TBL C_TBL


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL